Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An evolutionary view of functional diversity in family 1 glycosyltransferases.

Identifieur interne : 003000 ( Main/Exploration ); précédent : 002F99; suivant : 003001

An evolutionary view of functional diversity in family 1 glycosyltransferases.

Auteurs : Keiko Yonekura-Sakakibara [Japon] ; Kousuke Hanada

Source :

RBID : pubmed:21443631

Descripteurs français

English descriptors

Abstract

Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.

DOI: 10.1111/j.1365-313X.2011.04493.x
PubMed: 21443631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An evolutionary view of functional diversity in family 1 glycosyltransferases.</title>
<author>
<name sortKey="Yonekura Sakakibara, Keiko" sort="Yonekura Sakakibara, Keiko" uniqKey="Yonekura Sakakibara K" first="Keiko" last="Yonekura-Sakakibara">Keiko Yonekura-Sakakibara</name>
<affiliation wicri:level="1">
<nlm:affiliation>RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Yokohama 230-0045, Japan. keikoys@psc.riken.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Yokohama 230-0045</wicri:regionArea>
<wicri:noRegion>Yokohama 230-0045</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hanada, Kousuke" sort="Hanada, Kousuke" uniqKey="Hanada K" first="Kousuke" last="Hanada">Kousuke Hanada</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21443631</idno>
<idno type="pmid">21443631</idno>
<idno type="doi">10.1111/j.1365-313X.2011.04493.x</idno>
<idno type="wicri:Area/Main/Corpus">002E63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E63</idno>
<idno type="wicri:Area/Main/Curation">002E63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E63</idno>
<idno type="wicri:Area/Main/Exploration">002E63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An evolutionary view of functional diversity in family 1 glycosyltransferases.</title>
<author>
<name sortKey="Yonekura Sakakibara, Keiko" sort="Yonekura Sakakibara, Keiko" uniqKey="Yonekura Sakakibara K" first="Keiko" last="Yonekura-Sakakibara">Keiko Yonekura-Sakakibara</name>
<affiliation wicri:level="1">
<nlm:affiliation>RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Yokohama 230-0045, Japan. keikoys@psc.riken.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Yokohama 230-0045</wicri:regionArea>
<wicri:noRegion>Yokohama 230-0045</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hanada, Kousuke" sort="Hanada, Kousuke" uniqKey="Hanada K" first="Kousuke" last="Hanada">Kousuke Hanada</name>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Glycosyltransferases (classification)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Glycosyltransferase (classification)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Glycosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycosyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Glycosyltransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycosyltransferase</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21443631</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>03</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>An evolutionary view of functional diversity in family 1 glycosyltransferases.</ArticleTitle>
<Pagination>
<MedlinePgn>182-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-313X.2011.04493.x</ELocationID>
<Abstract>
<AbstractText>Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.</AbstractText>
<CopyrightInformation>© 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yonekura-Sakakibara</LastName>
<ForeName>Keiko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Yokohama 230-0045, Japan. keikoys@psc.riken.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanada</LastName>
<ForeName>Kousuke</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21443631</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-313X.2011.04493.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hanada, Kousuke" sort="Hanada, Kousuke" uniqKey="Hanada K" first="Kousuke" last="Hanada">Kousuke Hanada</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Yonekura Sakakibara, Keiko" sort="Yonekura Sakakibara, Keiko" uniqKey="Yonekura Sakakibara K" first="Keiko" last="Yonekura-Sakakibara">Keiko Yonekura-Sakakibara</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21443631
   |texte=   An evolutionary view of functional diversity in family 1 glycosyltransferases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21443631" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020